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Abstract. Evapotranspiration (ET) is a crucial component of the terrestrial hydrological cycle. Latent heat flux (LE, 

equivalent to ET in W/m2) observed by the eddy covariance (EC) technique, as known as LEEC, has been publicly recognized 15 

as highly accurate benchmark for global ET estimation. Currently, there is an increasing need for long time-series 

benchmark data to support climate change analysis, construction of new models, and validation of new products. However, 

existing LEEC datasets, like FLUXNET2015, face significant challenges due to limited observation periods and extensive 

data gaps. This hinders their application. To address these issues, we developed a gap-filling and prolongation framework for 

LEEC data and established a benchmark dataset for global ET estimation from 2000 to 2022 across 64 sites at various time 20 

scales. The framework mainly contained 3 parts: site selection and data pre-processing, gap-filled half-hourly / hourly LE 

data generation, and prolonged daily LE data generation. We selected 64 sites from FLUXNET2015 based on a rigorous 

filtering criterion. A novel bias-corrected random forest (RF) algorithm was used as the gap-filling and prolongation 

algorithm of the framework to produce seamless half-hourly and daily LE data. After analysis, the framework using novel 

bias-corrected RF algorithm achieves excellent performance both in hourly gap-filling and daily prolongation, with a median 25 

RMSE of 32.84 W/m2 and 16.58 W/m2, respectively. The algorithm significantly improved the gap-filling performance for 

long gaps and extreme values compared with the original RF and marginal distribution sampling (MDS) algorithm. The 

results demonstrate robust prolongation performance of our framework both on prolonging directions and temporal stability. 

There is a high consistency in data distribution between our gap-filled dataset and FLUXNET2015 dataset. In conclusion, a 

benchmark dataset for global ET estimation based on FLUXNET2015 from 2000 to 2022 was firstly published. This dataset 30 

can strongly provide data support for ET modelling, water-carbon cycle monitoring and climate change analysis. It is made 

freely available via the following repository: https://doi.org/10.5281/zenodo.13853409 (Li et al., 2024b). 
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1 Introduction 

Terrestrial evapotranspiration (ET), which represents the move and phase change of water from land to air, is the second 

critical component of the hydrological cycle (Zhang et al., 2016; Cui et al., 2021a; Yang et al., 2023; Tang et al., 2024). It 35 

accounts for more than 60% of the land surface water that comes from precipitation and returns to the atmosphere (Oki and 

Kanae, 2006). Therefore, it is essential to accurately estimate the amount and variation of global ET. Ground-based 

instruments for observing ET are widely distributed globally. The eddy covariance technique is the most commonly used, 

providing high-frequency (10–20 Hz) measurements of vertical wind speed and water vapor density (Aubinet et al., 2012; 

Pastorello et al., 2020). By calculating their covariance, the latent heat flux (LE, equivalent to ET in W/m2; Hereafter LE was 40 

used when describing ground observations) is derived. Its advantages are the non-destructive measurement of the underlying 

surface environment and flexible installation (in contrast to lysimeters) (Baldocchi, 2020; Pastorello et al., 2020). However, 

challenges remain in practical applications when LE obtained from the eddy covariance technique (LEEC) primarily serves 

the two research communities:  

(1) The global change analysis research community. With the abundance of data and the development of models, more and 45 

more ET products based on remote sensing or earth system model simulation are produced and shared (Mu et al., 2011; 

Martens et al., 2017; Zhang et al., 2019; Cui and Jia, 2021; Zheng et al., 2022). However, their results differ significantly in 

average annual totals, temporal trends and spatial distribution, which prevents us from properly understanding current 

changes in ET and the water-carbon cycle (Chen et al., 2014; Hu et al., 2021; Cui et al., 2023; Yang et al., 2023; Tang et al., 

2024). Since LEEC data are considered the ground truth, researchers are eager to find evidence from ground observations to 50 

support their hypotheses. As the most widely used LEEC dataset, the FLUXNET2015 dataset only provides observations up 

to 2014 (Pastorello et al., 2020). It cannot support global climate change analysis, nor can it help resolve discrepancies 

between different products;  

(2) ET modelling community. First of all, many ET models (such as PML-V2 and ETMonitor) require LEEC data for 

parameter calibration to improve their performance (Zhang et al., 2019; Zheng et al., 2022). Second, all ET products must 55 

undergo validation by comparing themselves to LEEC data (Mu et al., 2011; Zhang et al., 2016; Zhang et al., 2019; Cui et al., 

2021b; Zheng et al., 2022). Especially for the latest models developed using new satellite data (such as SMAP launched in 

2015), there is a need to develop and validate them based on the latest ground-based benchmark data (Das et al., 2018; 

Zhang et al., 2024). However, due to limitations such as data sharing policies, the research community still relies on 

FLUXNET2015 as the primary source for calibration and validation. With the acceleration of the global water and energy 60 

cycle, parameters calibrated using outdated data may no longer be applicable today, and it is difficult to assess model 

performance over the past decade. The research community hopes to use the latest, long-term LEEC data, but there are 

currently no up-to-date datasets readily available for them. 

Therefore, the two main issues with LEEC data, such as those represented by FLUXNET2015, are:  
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(1) Extensive data gaps. There is a substantial amount of missing data in LEEC. The missing rate of hourly data is around 65 

40% and can be up to 70% for some sites. Long gaps, such as the 30-day gap scenario, account for an average of 44% of all 

missing data in FLUXNET2015. Although the marginal distribution sampling (MDS) algorithm is used as the official gap-

filling algorithm, its performance in filling these long gaps is suboptimal (Foltýnová et al., 2020; Zhu et al., 2022);  

(2) Limited observation duration. Only 33% of the sites have observation periods exceeding 10 years and few sites have 

more than 20 years of observations. After quality control, less than half of the sites have observation periods of more than 8 70 

years. MDS can only be used as a gap-filling algorithm, but not for data prolongation. The potential of LEEC data is not fully 

exploited. Therefore, there is an urgent need for a long-term ET benchmark dataset based on ground observations with 

temporal continuous and high-quality data.  

To address this, we developed a gap-filling and prolongation framework for LEEC data and a benchmark dataset for global 

ET estimation from 2000 to 2022 across 64 sites is established. We selected 64 sites of a total 206 public sites from 75 

FLUXNET2015 based on a rigorous filtering criteria. The data obtained from reanalysis and remote sensing data were pre-

processed to match the point scale. Then, A novel bias-corrected random forest (RF) algorithm was used as the gap-filling 

and prolongation algorithm of the framework to produce seamless half-hourly and daily LE data. We designed 

comprehensively experiments to evaluate our results, including performance under different gap-length scenarios for gap-

filling results, the consistency between forward and backward prolongation, and the temporal stability of the prolongation. 80 

This dataset aims to provide valuable data support for global ET modelling, water-carbon cycle monitoring and climate 

change analysis. 

2 Data 

2.1 FLUXNET2015 

The FLUXNET2015 dataset contains land-atmosphere exchanges of energy and carbon data from 212 global distributed 85 

sites (206 sites under CC-BY 4.0 license) (https://fluxnet.org/data/fluxnet2015-dataset/). We mainly used the LE data 

observed by eddy covariance technique and some auxiliary meteorological observations. From the original measurements to 

the hourly / half-hourly product, both data have been through a strict and uniform processing procedure across all sites, and 

undergone further scrutiny for these critical variables (Pastorello et al., 2020). After quality assurance and quality control, 

data that didn’t meet the standard or missed due to power failures or sensor malfunction were filtered out and quality control 90 

flags were given. Only data marked as 0 is regarded as the ground observations, while others were gap-filled by MDS 

algorithm with high to low confidence if the number grew larger. We only used the LEEC data and the meteorological data 

marked as 0. 

https://doi.org/10.5194/essd-2024-460
Preprint. Discussion started: 27 November 2024
c© Author(s) 2024. CC BY 4.0 License.



4 
 

2.2 ERA5-Land 

We used the latest Reanalysis v5 dataset (ERA5-Land) provided by the European Centre for Medium-Range Weather 95 

Forecasts (ECMWF) (Muñoz-Sabater et al., 2021) as the source of reference data (https://www.ecmwf.int/en/era5-land). It 

provides global seamless meteorological data at the spatio-temprol resolution of 0.1°× 0.1° and 1 hour since 1950. The 

dataset provided meteorological variables including air temperature (TA), u-component of wind, v-component of wind, 

dewpoint temperature, incoming shortwave radiation (SW_IN), incoming longwave radiatio (LW_IN), and air pressure 

(PA). Wind speed (WS) was caculated by its two component, and relative humidity (RH) was caculated by the following 100 

equations: 

RH = e
es

× 100% ,           (1) 

es = 6.1078 × exp � ata
ta+273.15−b

�  �a = 17.27, b = 35.86, ta > 0
a = 21.87, b = 7.66,   ta ≤ 0 ,      (2) 

e = 6.1078 × exp � atd
td+273.15−b

�  �a = 17.27, b = 35.86, ta > 0
a = 21.87, b = 7.66,   ta ≤ 0 ,      (3) 

where es  is the saturated vapour pressure (kPa), e is the actual vapour pressure (kPa), ta  is the TA (℃) and td  is the 105 

dewpoint temperature (℃).  

2.3 MODIS 

We obtained the remotely-sensed normalized difference vegetation index (NDVI) data derived from Moderate Resolution 

Imaging Spectroradiometer (MODIS) MYD13Q1.061 dataset. Its spatial resolution is 250 m and data are provided every 16 

days. This dataset has been proved to be one of the best NDVI datasets and widely used in ET modelling. 110 

3 Methodology 

The gap-filling and prolongation framework for LEEC data mainly contained 3 parts: site selection and data pre-processing, 

gap-filled half-hourly or hourly LE data generation, and prolonged daily LE data generation (Fig 1). The details are shown as 

follows: 
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 115 
Figure 1 Schematic of the gap-filling and prolongation framework for LEEC data.  

3.1 Site selection and data pre-processing  

3.1.1 FLUXNET2015 site selection  

We selected 64 sites from the a total of 206 open-access FLUXNET2015 sites. The filtering criteria included: 1) Time span. 

Selected sites must have observations greater than or equal to 3 years. It essential for data prolonging to have sufficient data; 120 

2) data missing rate. The missing rate of the selected sites must under 50%, so that there are enough information for half-

hourly or hourly gap-filling; 3) energy balance closure. We calculated the daily energy balance ratio (EBR) if there were 

more than 36 (18 for hourly data) valid observations in a day. The closer the EBR is to 1, the more the observed surface 

energy data aligns with the first law of thermodynamics, indicating higher data quality. The site was retained when the 

number of days with an EBR of 0.8 to 1.2 accounted for more than 20% of all observed days. The EBR was calculated as 125 

follows: 

EBR = ∑ (LE+H)n
i=1

∑ (Rn−G)n
i=1

 ,           (4) 

where: Rn, G, and H are the net radiation, soil heat flux, and sensible heat flux, respectively. 
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Specially, there is no eligible sites in Africa strictly based on these criteria, thus we chose 2 more sites with relatively good 

data quality. In general, 64 sites were selected (Fig 2). They cover most regions or countries, with 49 sites in north 130 

hemesphere, and 15 sites in south hemesphere. Sites in Europe and the Americas have long observation periods, while Asia 

and Oceania are shorter. The average number of years of observations at the site location is around 8 years. Approximately 

10-40 sites per year are able to provide observations between 2000 and 2014. Moreover, they represent the vast majority of 

vegetated landcover type. See Table A1 for more specific site information. 

 135 

Figure 2 Global distribution (a) and information (b and c) of 64 selected FLUXNET2015 sites. The size of the star mark 

indicates the length of the data record. Panel (b) shows the number of sites in a year from 2000 to 2022. Panel (c) is the 

statistic of the length of observation periods for all sites. 

3.1.2 Data pre-processing  

We followd the same data pre-processing procedure by Li et al (2024). For the LEEC data, non-observed were filtered out 140 

based on quality control flags. The rest were the data for training and test datasets. The LEEC data is reported at local time. 
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Reference variables, including TA, WS, RH, PA, SW_IN, LW_IN, and NDVI, were selected based on Penman-Monteith 

(PM) equation (Monteith, 1965). These variables directly or indirectly influnce the parameters in PM equation and are the 

most suitable variables to characterize meteorological and vegetated conditions which influence the ET process (Zhang et al., 

2008; Mu et al., 2011; Li et al., 2024a). This equation is expressed as: 145 

LE =
∆Rn∗+

ρcp×VPD
ra

∆+γ�1+rsra�
 ,           (5) 

VPD = es − e ,            (6) 

where ∆ is the slope of the vapor pressure curve, Rn
∗ is the net available radiation at the evaporating surface, ρ is the density 

of air, cp is the specific heat of air at constant pressure,VPD is the air vapour pressure deficit, γ is a psychrometric constant, 

rs is the surface resistance, and ra is the aerodynamic resistance. 150 

Reference variables from ERA5-Land and MODIS were extracted as time-series data at point scale using Google Earth 

Engine (https://code.earthengine.google.com/). Depending on the frequency of LEEC data records, the hourly time-series data 

from ERA5-Land were resampled to a half-hourly scale using the linear interpolation method or remain constant at hourly 

scale. We converted the UTC time to the local time of the site. The NDVI data with a 16-day temporal scale were resampled 

to a daily frequency using Savitzky-Golay filtering. The same value was then assigned uniformly for each day. 155 

3.1.3 De-biasing the ERA5-Land data  

In order to minimize mismatch between in-situ and raster data, the time-series data from ERA5-Land were further processed. 

We followed the similar procedure as the official products (Vuichard and Papale, 2015) and corrected the bias between 

ground observations and ERA5-Land using linear correction method: 

Groundi = k𝑖𝑖 × EL5i + b𝑖𝑖 ,          (7) 160 

where: i means different variables, EL5 is the ERA5-Land data, and Ground is the ground observations from 

FLUXNET2015. These variables were filtered by quality control flags and only valid observations were used. The ground 

observed vapour variable was VPD instead of RH in some sites. We transferred it to RH using the following equation: 

RH = �1 − VPD
es
� × 100% ,          (8) 

3.2 Gap-filled half-hourly or hourly LE data generation  165 

3.2.1 Bias-corrected random forest algorithm  

Random Forest (RF), used for both classification and regression tasks, is composed of multiple decision trees, and it 

combines their predictions to generate the final output (Breiman, 2001). Numerous studies have demonstrated the 

effectiveness of machine learning algorithms for gap-filling ground-based ET data (Moffat et al., 2007; Irvin et al., 2021; 

Mahabbati et al., 2021; Zhu et al., 2022; Li et al., 2024a). The random forest (RF) algorithm is considered as the most robust 170 

and efficient machine learning algorithm to replace traditional MDS algorithm and has significant potential for prolonging 

time series. However, there has been a lack of research on prolonging LEEC time series using the RF and no corresponding 
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datasets have been released. Although performance of RF on flux gap-filling has been proven to be effective, it still faces 

challenges, such as overestimating lower values and underestimating higher values. Therefore, it is necessary to correct the 

bias. Here, we chose a novel bias-corrected RF algorithm (Zhang and Lu, 2012). It added a bias correction RF model to 175 

improve the performance compared with original RF (Fig 3). This algorithm has been used for studies such as drought 

monitoring (Feng et al., 2019; Wang et al., 2023). Here, the bias-corrected RF model for processing flux data were built and 

the detailed procedure of this bias-correction method is summarized in Fig 3. 

In the model training steps, we trained one model (including RF model 1 and 2) for each site, meaning a total of 64 models 

were trained for data gap-filling task. The data for each site were randomly divided into two parts. The training dataset was 180 

80% of the total dataset and the rest was the test set. We used a 10-fold cross validation method to determine the optimal 

combination of hyperparameters to ensure the best model performance and avoid overfitting. Futhurmore, the taining and 

test dataset were generated 20 times for one site and found that hyperparameters gained from different taining data are 

strikingly similar for one site. Therefore, for the final data generation, we chose the hyperparameters with reletivly better 

performance and used all valid LE observations to build the model. See 3.2.2 for details on how to split the training and test 185 

sets. 

 
Figure 3 Schematic diagram of the bias-corrected RF algorithm. Train in the subscript indicates the training data. Test in the 

subscript indicates the test data. Gaps in the subscript indicates the data gap to be filled. Single quotes indicate predicted 

values. X indicates the reference variables, including TA, WS, RH, PA, SW_IN, LW_IN, and NDVI. Prolonging daily data 190 

also has the same processing steps.  

3.2.2 Artificial gap scenarios 

The length of gaps in LEEC data varied a lot, from one single missing record to more than 30-day missing data. In order to 

fully evaluate the performance of our model, we generated four different gap-length scenarios from short to long: 30-min, 1-

day, 7-day and 30-day scenarios (Zhu et al., 2022; Li et al., 2024a). The amount of data for each of the four gap scenarios 195 

accounts for about 5% of the total dataset, and all artificial gaps constituted the test set (20%). After removing these artificial 

gaps, we used the rest data (80%) to train our model.  
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Specifically, we used a sliding window approach to generate gap scenarios. If the valid observed data coverage within this 

window exceeded 50%, the window was marked. The window would automatically move forward until this criterion was 

met and no overlaps among marked sliding windows were ensued. The sliding window size initially started at 30 days. After 200 

completing one full round of marking the data, we randomly selected data gaps that account for 5% of the total dataset. and 

these data were removed from all data. Then, the sliding window size was reduced to 7 days and 1 day, and the steps were 

repeated. Finally, we randomly removed 5% of half-hourly data to make the 30-min scenarios, ensuring 5 consecutive valid 

points before and after each gap. To ensure the robustness of the results, we repeated the above steps 20 times, generating 20 

different combinations of training and testing sets.  205 

For intercomparison, we also used MDS algorithm and the original RF algorithm as the gap-filling algorithm of the 

framework to fill the gaps. The core of the MDS algorithm is to use a sliding window approach to find similar 

meteorological conditions (Reichstein et al., 2005). It primarily uses SW_IN, VPD, and TA as reference variables. The 

larger the sliding window, the lower the confidence in the gap-filling results. To closely simulate the official data producing 

process, this study set the minimum thresholds for the three variables at 50 W/m2, 5 hPa, and 2.5°C, respectively. The MDS 210 

algorithm was implemented using the REddyProc (R package, v.1.3.3). 

3.3 Prolonged daily LE data generation 

3.3.1 Data generation 

After half-hourly or hourly gap-filling, the time continues half-hourly data were obtained. We aggregated the continuous LE 

data and reference data from half-hourly or hourly scales to the daily scale and provided the daily missing rate as the quality 215 

control flag. We also chose the bias-corrected RF algorithm as the prolongation algorithm for the framework. The model 

structure and training steps were the same as in section 3.2.1. During model training, we trained one model for each station, 

selecting all data except for those with a missing rate of 1 (completely missing) for model training. The 10-fold cross-

validation method was used to determine the optimal hyperparameters. Ultimately, the seamless daily LE data from 2000 to 

2022 were produced. The final product has been deposited at https://doi.org/10.5281/zenodo.13853409 (Li et al., 2024b) and 220 

can be downloaded publicly. 

3.3.2 Experimental design for evaluating the prolonged data 

Since the number of days with a missing rate of 0 at the daily scale is very rare, we consider that a missing rate of less than 

10% at the daily scale can be used as the test data. However, using this criterion results in an insufficient training dataset. 

Therefore, we chose data with daily missing rate of less than 1 as the training set. 225 

The prolongation at the daily scale is divided into two directions: forward and backward. To demonstrate the consistency of 

our method in both directions, we used the first 1/3 of the data as the test set and the remaining 2/3 of the data as the training 

set for the backward approach, while employing the first 2/3 as the training set and the last 1/3 as the test set for the forward 

approach. We compared the performance of both directions. 
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As the prolongation period increases, the temporal stability of the model’s performance also needs to be validated. Among 230 

the 64 sites, the average observation period is 8 years, with a minimum of 3 years. Therefore, we selected these two 

representative lengths for our experiments. First, we chose sites with more than 8 years of observations, using the first 8 

years of data as the training set and each subsequent year as the test set. Second, for sites with over 3 years of observations, 

we used the first 3 years as the training set and each subsequent year as the test set. 

3.4 Performance metrics 235 

We selected three commonly used performance metrics, including the root mean square error (RMSE, W/m2), bias (Bias, 

W/m2), correlation coefficient (CC), and coefficient of variation (CV). The equations are as follows: 

RMSE = �1
n
∑ (pi − oi)2n
i=1  ,          (9) 

Bias = 1
n
∑ (pi − oi)n
i=1  ,           (10) 

CC = ∑ (pi−p�)(oi−o�)n
i=1

�∑ (pi−p�)2 ∑ (oi−o�)2n
i=1

n
i=1

 ,          (11) 240 

CV = σ
μ

× 100% ,           (12) 

where pi and oi are the values from prediction and observation, respectively. p� denotes the mean predicted value. σ is the 

standard deviation of the target data. μ is the averaged value of the target data.  

4 Results  

4.1 Evaluation of half-hourly or hourly gap-filled LE data 245 

4.1.1 Gap-filling performance under different gap-length scenarios 

We conducted a comprehensive evaluation of the gap-filling performance for three algorithms under artificially constructed 

gap scenarios, including the official algorithm (MDS), widely-used RF algorithm, and novel bias-corrected RF algorithm. 

For each station and each combination of training and test set, we calculated the statistical metrics RMSE, CC, and Bias, and 

then visualized the results using box plots (Fig 4 and Fig 5).  250 

In general, the results indicate that the gap-filled data obtained using the bias-corrected RF are superior to the official (MDS) 

algorithm, particularly outperforming it significantly for long gaps. The bias-corrected RF exhibits the best performance 

(32.84 W/m2 and 0.87 in terms of median RMSE and CC), with median RMSE improvements of 1.78% and 0.69% 

compared to MDS and RF, respectively. As for the bias metric, Figure 5 shows that as the length of the gap length increases, 

the uncertainty increases and the bias-corrected RF provides more robust results.  255 

For short gaps, we find that the performance of the bias-corrected RF is closer to those of the MDS compared to the original 

RF. Specifically, the MDS performs exceptionally well, with median values of RMSE and CC at 27.29 W/m2 and 0.91, 
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respectively. The original RF performs the worst, while the bias-corrected RF reduce bias (2.00% in terms of RMSE), 

making its performance closer to the MDS compared with the original RF. However, as the gap length increases, the 

performance of the MDS declines sharply, which is consistent with previous studies (Foltýnová et al., 2020; Zhu et al., 2022; 260 

Li et al., 2024a). Under the 30-day gap length scenario, the median RMSE of the MDS (35.91 W/m2) is 11.02% and 11.41% 

lower than those of RF (31.95 W/m2) and bias-corrected RF (31.81 W/m2), respectively. Due to the use of the sliding 

window method, MDS encounters significant issues during the early months of observation. Specifically, when data is 

completely missing for the early months, the results from MDS at the monthly scale are nearly the same value. A detailed 

analysis of this issue can be found in Section 5.1. 265 

We further analyzed the gap-filling results across different land cover types. Based on station count, land cover 

characteristics, and relevant practices from previous studies, we categorized the land surface types into four groups for 

analysis: CRO, GRA, DBF/EBF/ENF/MF, and CSH/OSH/SAV/WSA/WET. Overall, for all land surface types, the bias-

corrected RF performs better than the original RF and provides closer performance to MDS. Specifically, the bias-corrected 

RF shows the most significant improvement in CRO, with the median RMSE being 7.05% lower compared to MDS. This 270 

indicates that incorporating NDVI as a reference variable can better capture the seasonal dynamics of crops. We also 

observed that in GRA and CSH/OSH/SAV/WSA/WET, the bias-corrected RF provides results closer to the gap-filling 

performance of MDS and the MDS performs much better than the original RF. Across different gap length scenarios, the 

performance is consistent across land cover types: the bias-corrected RF demonstrates close performance to the MDS and the 

RF performs worse than MDS for short gap length. For longer gap length, RF and bias-corrected RF significantly outperform 275 

the MDS. Considering that in the FLUXNET2015 dataset, long gaps account for 44% of the data, the bias-corrected RF can 

serve as a more reliable alternative algorithm to the MDS for hourly-scale data gap-filling, yielding more robust results than 

those produced by the MDS. Overall, the bias-corrected RF algorithm combines the superior performance of the original RF 

algorithm under long gap length scenario and provides corrections where the original RF underperforms.  
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 280 

Figure 4 The gap-filling performance of three algorithms under different gap-length scenarios. The left panels show the 

results of the root mean square error (RMSE, W/m2) and the right panels show results of correlation coefficient (CC) 

between gap-filled values and observations. Different rows of this figure indicate different land cover types. The three 

horizontal lines of the boxes indicate the first quartile, median, and third quartile, respectively, and the black dots indicate 

the means. MDS: marginal distribution sampling. RF: random forest. 285 
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Figure 5 The bias between gap-filled values and observations of three methods under different gap-length scenarios. 

Different rows of this figure indicate different land cover types. The three horizontal lines of the boxes indicate the first 

quartile, median, and third quartile, respectively, and the black dots indicate the means. MDS: marginal distribution 

sampling. RF: random forest. 290 

4.1.2 Examples of gap-filled data under artificial 30-day gap-length scenario 

For the 30-day gap scenario, the bias-corrected RF algorithm performs better than MDS in characterizing the time series. As 

shown in Figure 6, the bias-corrected RF exhibits strong performance across all land cover types and provides a more 

accurate representation of daily periodic variations. Although there are still some biases in predicting certain extremes, these 

are generally smaller compared to those of MDS. In contrast, MDS demonstrates significant gap-filling biases across 295 
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different land cover types, resulting in abnormal overestimations and underestimations (Fig 6a, b, and i). In some cases, it 

even fails to capture the daily variations of LE (Fig 6e), while also distorting irregular LE changes (Fig 6c). 
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Figure 6 Time series of gap-filled results obtained from the bias-corrected RF algorithm compared to those from the MDS 

algorithm under artificial 30-day gap-length scenario across different land cover types. The blue dashed boxes indicate 300 

scenarios where the MDS gap-filling results are significantly biased. The sites corresponding to each land cover type are: 

US-ARM, CN-Cng, FR-Fon, BR-Sa1, RU-Fyo, CA-Gro, US-KS2, ES-LJu, SD-Dem, AU-How, and US-Myb. 

4.2 Evaluation of daily prolonged LE 

4.2.1 The consistency between forward and backward prolongation. 

As shown in Fig 7a and 7b, the prolongation performance in both forward and backward directions exhibit high consistency. 305 

The results have good accuracy, with RMSE (CC) of 16.58 W/m2 (0.91) for forward and 17.35 W/m2 (0.90) for backward. 

The slightly difference may be mainly due to a higher volume of missing data in the first two-thirds of the data compared to 

the last two-thirds for sites of these land cover types (See Section 5.1). There are slight variations in prolongation results for 

different land cover types (Fig 7c and 7d). Performance of CRO and DBF/EBF/ENF/MF is almost the same in both 

directions. Similar to the half-hourly data gap-filling, our results also demonstrate excellent performance in cropland, with a 310 

CC of 0.93 in both directions. GRA and CSH/OSH/SAV/WSA/WET perform slightly worse (2.46 W/m2 and 3.74 W/m2 

higher) in the backward direction.  

Figure 2b indicates that the need for forward prolongation is significantly greater than for backward prolongation from 2000 

to 2022. Therefore, the validation in the following sections will focus only on the forward direction.  
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  315 
Figure 7 The consistency of forward and backward prolongation. (a) and (b) show the scatterplots of predicted daily LE 

against observations for forward and backward prolongation, respectively. (c) and (d) are the specific performance of 

different land cover types. 

4.2.2 The temporal stability of the prolongation 

We used data from the first three years and the first eight years for training and evaluated the prolongation performance for 320 

each subsequent year. Three years of data represents an extreme case of the minimum training data volume in this dataset, 

while eight years of data reflects a typical scenario within the dataset. Figure 8 shows that our prolongation results exhibits 

minimal performance degradation over time. The greater the amount of training data, the higher the temporal stability will 

be. Specifically, the model trained using the first three years yields CVs of RMSE and CC of only 3.29% and 3.83%, 

respectively. The model trained using the first eight years yields CVs of RMSE and CC of only 3.24% and 1.75%, 325 

respectively. The bias fluctuates within a small range around zero each year, indicating that our estimation bias is relatively 

robust. For different land cover types, DBF/EBF/ENF/MF shows good stability. GRA and CSH/OSH/SAV/WSA/WET show 

more noticeable fluctuations over time but did not experience significant performance degradation. Overall, our model 

demonstrates excellent temporal stability in both extreme and typical cases. 
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  330 
Figure 8 The temporal stability of the prolongation algorithm for different land cover types. (a), (c), and (e) show the 

median of RMSE, CC and Bias obtained from the model trained by first 3 years data, respectively. (b), (d), and (f) show the 

median of RMSE, CC and Bias of obtained from the model trained by first 8 years data, respectively. 

4.2.3 Demonstration of daily- and monthly-scale prolonged time series  

Due to the scarcity of days with a missing rate below 10%, we chose to compare the prolonged results from section 4.2.2 335 

with the daily data aggregated from the hourly gap-filled data. We plotted the results obtained in section 4.2.2 as time series 

graphs and compared the prolonged results with the aggregated daily data from hourly gap-filled results. As shown in Fig 9 

and 10, our prolongation algorithm effectively captures the seasonal variation of LE, aligning well with hourly gap-filled 

results in both magnitude and trend. The model performs excellently in both extreme (3 years data) and typical (8 years data) 

cases, particularly for sites with a land cover type of CRO. For evergreen vegetation sites (ENF and EBF) and sparse 340 

vegetation sites (SAV and OSH), the lack of vegetation change information leads to unclear influencing factors on LE 

variation. Some extreme high values are underestimated. However, our algorithm still performs well in capturing daily 

fluctuations.  

Given that many global change studies focus on monthly scales, we aggregated both the daily data to assess the performance. 

As shown in Fig 11, the monthly scale results meet the requirements of related research. Both the trend and magnitude align 345 

well with hourly gap-filled results. The CRO sites match almost perfectly with the hourly gap-filled results, while the ENF 

and EBF sites, which performed slightly worse at the daily scale, accurately capture subtle fluctuations at the monthly scale.  
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Figure 9 Time series of daily prolonged results obtained from the model trained using the first three years across different 

land cover types. The sites corresponding to each land cover type are: US-Ne1, AU-DaP, FR-Fon, BR-Sa1, RU-Fyo, CA-350 

Gro, US-KS2, US-Whs, SD-Dem, AU-How, and US-Myb. 

  
Figure 10 Time series of daily prolonged results obtained from the model trained using the first eight years across different 

land cover types. The sites corresponding to each land cover type are: US-Ne1, US-Var, FR-Fon, BR-Sa1, RU-Fyo, CA-Gro, 

ES-LJu, and AU-How. 355 
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Figure 11 Time series of monthly aggregated results obtained from the model trained using the first three years across 

different land cover types. The stations corresponding to each land cover type are: US-Ne1, AU-DaP, FR-Fon, BR-Sa1, RU-

Fyo, CA-Gro, US-KS2, US-Whs, SD-Dem, AU-How, and US-Myb. 
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5 Discussions 360 

5.1 Comparison between FLUXNET2015 and our dataset 

After extensive analysis of the experimental design results in Section 4, we have demonstrated excellent gap-filling and 

prolongation performance at the methodological level. To evaluate our released dataset, we compared it with the official 

dataset from FLUXNET2015. This is because missing data in observations cannot provide a verifiable truth. Figure 12 

shows the data distribution results of gap-filled data at both hourly and daily scales for the two datasets. The results indicate 365 

a high consistency in data distribution between our dataset and FLUXNET2015. At the hourly scale, the median and 

quartiles of both datasets are nearly identical. For CRO, FLUXNET2015 exhibits slightly higher values compared to our 

dataset, while for GRA and CSH/OSH/SAV/WSA/WET, its estimates are slightly lower. At the daily scale, the consistency 

is even greater, with almost identical data distributions across all land surface types. 

Additionally, we compared the differences between the two datasets aggregated to monthly and yearly scales. As shown in 370 

Fig 13, the data from both datasets distributes along the 1:1 line at both monthly and yearly scales. Although some months 

and years exhibited discrepancies between the two datasets, it still demonstrates a high degree of consistency. Specifically, at 

the monthly scale, we observed instances where some LE data of FLUXNET2015 show close values, while our predictions 

demonstrate clear distinctions. When aggregated to the yearly scale, these discrepancies manifested as outliers. This instance 

arises because many FLUXNET2015 sites experienced complete data loss for the first four to eight months (e.g., AU-ASM 375 

from January to August 2010, CA-Cro from January to July 2003, US-UMd from January to April 2007, among others). Due 

to the lack of neighboring information in the sliding window, the MDS algorithm struggled to provide effective gap-filling, 

resulting in nearly identical gap-filled values for those months. Consequently, these months could not be included in the 

usable data range, rendering the aggregated results at the yearly scale unreliable. In contrast, our algorithm can utilize the 

reference data for each specific moment to predict the corresponding LE, so we can provide more accurate gap-filling 380 

results.  

Therefore, the advantages of our dataset are: 1) Hourly scale Gap-filling enhances accuracy compared to FLUXNET2015 

under long gap-length scenarios; 2) daily scale results show good consistency with FLUXNET2015 while providing a much 

longer time series (23 years compared to averaged 8 years). However, our data does have some limitations. For instance, due 

to the restrictions of NDVI data, our dataset only provides data from February 18, 2000 for both hourly gap-filling and daily 385 

prolongation. 
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Figure 12 Distribution of gap-filled data at both (a) half-hourly and (b) daily scales for our dataset and FLUXNET2015 

dataset. 

 390 
Figure 13 Scatterplot of LE data of our dataset against that of FLUXNET2015 dataset. 

5.2 Reference variables importance analysis 

Figure 14 presents the results of the reference variables importance using the permutation feature importance technique. 

Each input feature is randomly shuffled to calculate the performance deterioration. For half-hourly or hourly gap-filling, the 
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order of variable importance is SW_IN > NDVI > TA > LW_IN > RH > WS > PA. Consistent with earlier research (Irvin et 395 

al., 2021; Zhu et al., 2022; Li et al., 2024a), SW_IN is the key variable that significantly influences LE variations across 

terrestrial ecosystems. It provides energy for the ET process. Throughout the day, SW_IN exhibits significant diurnal 

variation. NDVI is the second most important variable, but its influence varies between sites. This explains why the 

performance of the two land cover types in section 4.2.3 is slightly inferior to that of other types. For sites with evergreen 

vegetation, seasonal changes in vegetation are not pronounced, making NDVI less effective in providing clear information to 400 

the model. For daily prolongation, the order of variable importance is different. The importance of SW_IN decreases 

significantly because daily LE variation is more closely related to NDVI, which reflects seasonal changes. Similar to the 

hourly scale, NDVI also shows inconsistencies between sites for the same reasons. Additionally, TA, as the third most 

important variable, provides critical information at sites dominated by soil evaporation. Variables like LW_IN, RH, WS, and 

PA hold comparable significance as minor factors, offering insights into the meteorological background conditions.  405 

 

Figure 14 Variable importance for half-hourly or hourly gap-filling and daily prolongation. 

6 Data availability 

Our released data mainly contains four types of data: 

(1) Half-hourly or hourly gap-filled LE data: The data are well gap-filled LE data using the novel bias-corrected RF 410 

algorithm. In the filenames, “HH” or “HR” indicate half-hourly or hourly scale data, respectively. The time information in 

the data files includes a pair of timestamps consistent with those in FLUXNET2015. The data are recorded at local time. The 

start time is “2000-02-18, 00:00:00”, and the end time is the same as the observation time at each site. For the quality control 

flags (QC), a value of 0 indicates observed data, while 1 indicates gap-filled data. 
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(2) Prolonged daily LE data: This dataset provides the prolonged daily LE data using the novel bias-corrected RF algorithm. 415 

The seamless data covers the period from February 18, 2000, to December 31, 2022. For the prolonged part, the quality flag 

is set to 2. The rest data is consistent with the aggregated daily LE data. 

(3) Aggregated daily, monthly and yearly LE data: The hourly dataset is aggregated from the gap-filled half-hourly data to a 

daily scale. The start time is “2000-02-18”, and the end time is the same as the observation time at each site. Data quality 

control flags are also provided, with the values representing the percentage of hourly observations for each day. The monthly 420 

and yearly LE data are aggregated from the prolonged daily LE data. Quality control flags represent the proportion of days 

with more than 90% of hourly observations in a given month or a given year. No distinction is made between prolonged data 

and data with complete missing observations within a day. The start time for the monthly data is March 2000, and that for 

the yearly data is 2001. 

All files are formatted as csv files. NDVI and debiased reference variables from ERA5-Land are also provided in our 425 

released data. The product has been deposited at https://doi.org/10.5281/zenodo.13853409 (Li et al., 2024b) and can be 

downloaded publicly. 

7 Conclusions 

The current LEEC data are increasingly insufficient to meet the needs of two major research communities for for long time-

series benchmark data to support climate change analysis, construction of new models, and validation of new products. To 430 

address the issues in the FLUXNET2015 dataset and meet the corresponding requirements, we developed a gap-filling and 

prolongation framework for LEEC data and a benchmark dataset for ground-based ET from 2000 to 2022 across 64 sites is 

established. The results indicate that: 

1) Hourly gap-filling: the novel bias-corrected RF algorithm demonstrates excellent performance, achieving a median RMSE 

of 32.84 W/m2. It improves the original RF algorithm’s poor gap-filling performance for short gaps, approaching the 435 

performance of official algorithm (MDS). It also significantly improves performance for long gaps, exceeding the MDS 

algorithm by 11.41%. The extreme values are predicted more accurately, which reduces the result’s uncertainty compared to 

the MDS algorithm. It performs well across various land surface types, with the most significant improvement (7.05%) 

observed in cropland. This indicates that including NDVI in reference variables better captures the seasonal dynamics of LE. 

Furthermore, our gap-filled data distribution aligns well with official products. 440 

2) Daily prolongation: our method exhibits robust performance in both forward and backward directions (16.58 W/m2 and 

17.35 W/m2, respectively). The method shows slight variation in performance across different land surface types, with the 

best performance for cropland. In terms of the temporal stability, our results maintain excellent performance under both 

extreme condition (training with the first three years of data) and typical condition (training with the first eight years of 

data). The time series effectively captures seasonal variations in LE, aligning well with observations. 445 
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3) For hourly data gap-filling, SW_IN is the most important factor, while NDVI plays a decisive role for daily prolongation. 

However, in cases where the land surface is dominated by evergreen or sparse vegetation, the importance of NDVI 

significantly decreases.  

Overall, our proposed gap-filling and prolongation framework for LEEC data is robust and a benchmark dataset for global ET 

estimation based on FLUXNET2015 from 2000 to 2022 is established. It can provide essential data support for ET 450 

modelling, water-carbon cycle monitoring and climate change analysis. 

Appendix A: Site information 

Site IGBP Latitude Longitude Start year End year Time cover after 2000 Missing ratio 
AU-ASM SAV -22.28  133.25  2010 2014 5 0.37  
AU-Cpr SAV -34.00  140.59  2010 2014 5 0.28  
AU-DaP GRA -14.06  131.32  2007 2013 7 0.36  
AU-DaS SAV -14.16  131.39  2008 2014 7 0.21  
AU-Dry SAV -15.26  132.37  2008 2014 7 0.45  
AU-Gin WSA -31.38  115.71  2011 2014 4 0.44  
AU-How WSA -12.49  131.15  2001 2014 14 0.35  
AU-Rig GRA -36.65  145.58  2011 2014 4 0.26  
AU-Stp GRA -17.15  133.35  2008 2014 7 0.29  
AU-TTE GRA -22.29  133.64  2012 2014 3 0.40  
AU-Whr EBF -36.67  145.03  2011 2014 4 0.32  
AU-Wom EBF -37.42  144.09  2010 2014 5 0.41  
BR-Sa1 EBF -2.86  -54.96  2002 2011 10 0.27  
BR-Sa3 EBF -3.02  -54.97  2000 2004 5 0.47  
CA-Gro MF 48.22  -82.16  2003 2014 12 0.24  
CA-NS2 ENF 55.91  -98.52  2001 2005 5 0.49  
CA-NS3 ENF 55.91  -98.38  2001 2005 5 0.33  
CA-Oas DBF 53.63  -106.20  1996 2010 11 0.17  
CA-Qfo ENF 49.69  -74.34  2003 2010 8 0.23  
CA-SF1 ENF 54.49  -105.82  2003 2006 4 0.37  
CA-SF2 ENF 54.25  -105.88  2001 2005 5 0.35  
CA-SF3 OSH 54.09  -106.01  2001 2006 6 0.36  
CA-TP1 ENF 42.66  -80.56  2002 2014 13 0.47  
CA-TP3 ENF 42.71  -80.35  2002 2014 13 0.41  
CA-TP4 ENF 42.71  -80.36  2002 2014 13 0.18  
CG-Tch SAV -4.29  11.66  2006 2009 4 0.57  
CN-Cha MF 42.40  128.10  2003 2005 3 0.24  
CN-Cng GRA 44.59  123.51  2007 2010 4 0.27  
CN-Din EBF 23.17  112.54  2003 2005 3 0.31  
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CN-Ha2 WET 37.61  101.33  2003 2005 3 0.17  
CN-Qia ENF 26.74  115.06  2003 2005 3 0.21  
DE-Obe ENF 50.79  13.72  2008 2014 7 0.18  
DE-Tha ENF 50.96  13.57  1996 2014 15 0.13  
ES-Amo OSH 36.83  -2.25  2007 2012 6 0.38  
ES-LJu OSH 36.93  -2.75  2004 2013 10 0.27  
FR-Fon DBF 48.48  2.78  2005 2014 10 0.18  
GF-Guy EBF 5.28  -52.92  2004 2014 11 0.24  
MY-PSO EBF 2.97  102.31  2003 2009 7 0.21  
RU-Fyo ENF 56.46  32.92  1998 2014 15 0.22  
SD-Dem SAV 13.28  30.48  2005 2009 5 0.64  
US-AR1 GRA 36.43  -99.42  2009 2012 4 0.23  
US-AR2 GRA 36.64  -99.60  2009 2012 4 0.33  
US-ARM CRO 36.61  -97.49  2003 2012 10 0.15  
US-Blo ENF 38.90  -120.63  1997 2007 8 0.36  
US-Goo GRA 34.25  -89.87  2002 2006 5 0.40  
US-KS2 CSH 28.61  -80.67  2003 2006 4 0.27  
US-Me2 ENF 44.45  -121.56  2002 2014 13 0.14  
US-Me3 ENF 44.32  -121.61  2004 2009 6 0.26  
US-MMS DBF 39.32  -86.41  1999 2014 15 0.34  
US-Myb WET 38.05  -121.77  2010 2014 5 0.32  
US-Ne1 CRO 41.17  -96.48  2001 2013 13 0.15  
US-Ne2 CRO 41.16  -96.47  2001 2013 13 0.23  
US-Ne3 CRO 41.18  -96.44  2001 2013 13 0.21  
US-NR1 ENF 40.03  -105.55  1998 2014 15 0.22  
US-SRC OSH 31.91  -110.84  2008 2014 7 0.38  
US-SRG GRA 31.79  -110.83  2008 2014 7 0.14  
US-SRM WSA 31.82  -110.87  2004 2014 11 0.12  
US-Ton WSA 38.43  -120.97  2001 2014 14 0.31  
US-Twt CRO 38.11  -121.65  2009 2014 6 0.36  
US-UMB DBF 45.56  -84.71  2000 2014 15 0.23  
US-UMd DBF 45.56  -84.70  2007 2014 8 0.17  
US-Var GRA 38.41  -120.95  2000 2014 15 0.21  
US-Whs OSH 31.74  -110.05  2007 2014 8 0.16  
US-Wkg GRA 31.74  -109.94  2004 2014 11 0.16  
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